# Overview of the DAB+ System

Dr. Les Sabel - WorldDMB Technical Committee



# **DAB Family of Standards**

**DAB+ Features** 

**Ensemble Structure** 

**System Structure** 

**Network Options** 

The Future



Overview of the DAB+ System

## Welcome to the DAB Family of Standards



One family provides the most cost effective delivery of digital radio and mobile TV



An introduction





#### **The Eureka Family of Standards**

DAB: 1995 Original audio with PAD and data services standard

T-DMB: 2006 Added video services for Mobile TV and enhanced

data streaming

• DAB+: 2007 Enhanced audio service efficiency

Why DAB+?

One family provides the most cost effective delivery of digital radio and mobile TV

- 2.5 times more audio services than DAB due to the use of HE AAC+ v2
- Slightly better coverage 1 to 2dB better than DAB better FEC coding
- More flexibility for Programme Associated Data delivery
- PAD content has much stronger error protection



The DAB Family of Standards

# For detailed description of the DAB+ system refer to the following ETSI standards documents

EN 300 401

TR 101 496-1, -2, -3

TS 102 563

Main document

Guidelines of use and operation

Transport of AAC audio



See <a href="http://www.worlddab.org">http://www.worlddab.org</a>

or

http://www.etsi.org/standards



## **DAB+ Features**



Overview of the DAB+ System

## **Audio - Room for Lots of Services**

#### Australian example

#### Simulcast stations (AM / FM)























MIX102.3







NOVA 106.9





























TRIPLINA











fox











## **DAB+ Features**

## Choose the station from a list

No more need to remember the station's frequency!!!

Station list

Easy to choose a station, listener has more information about the services available





**DAB+ Features** 

# Programme Associated Data (PAD) Dynamic Label Segment – Text Delivery

Straight forward, effective

Up to 128 characters per text segment

All DAB+ receivers have DLS text display

Good receivers block text display or appropriate scrolling speed





# Programme Associated Data Slideshow (SLS) Images

Further strengthens the audio message

Standalone advertising during song items

Promotion of station activities

Traffic and weather reports

Sports results and stock market information

Local news, happenings, community events















**DAB+ Features** 

## **Data Services**

# **Electronic Programme Guide (EPG)**

Very useful tool for promotion of programs, talent, competitions

Especially useful for multilingual national broadcasters with scheduled programme slots

Is flexible, can be station, network or ensemble based

Some receivers can record programs for later listening





### **Data Services – Other**

Traffic e.g. TMC and TPEG can provide up to the moment information on

- current traffic flow and congestion
- fuel locations and prices
- parking

#### **Journaline**

Hierarchical categorised text service

Custom
Applications can
be developed









**DAB+ Features** 



Overview of the DAB+ System

Multiple different radio stations transmitting on the same frequency

Multiple different radio stations use the same transmitter

Multiple different radio stations share the cost of that single transmission

Very flexible to ensure the broadcaster can deliver the content they provide in the most cost effective manner





An Ensemble will typically carry multiple services from multiple radio networks, for example:

| • | Network | 1 – 2 stati | ons (serv | vices) | 128kb | os |
|---|---------|-------------|-----------|--------|-------|----|
|---|---------|-------------|-----------|--------|-------|----|

| • | Network 2 – 4 stations | 256kbps |
|---|------------------------|---------|
|---|------------------------|---------|

| • | Network 4 – 9 stations | 576kbps |
|---|------------------------|---------|
|---|------------------------|---------|

Total 18 stations 1152kbps

- Each network can have their own allocated capacity on the ensemble
  - No other network has access to that capacity
- Each network can reconfigure their allocated capacity anytime without impacting the other networks' services
  - Pop-up services change their name and sometimes bit rate regularly







#### Each ensemble has

- its own Ensemble Label
- its own unique Ensemble ID code
- can carry a unique identifying code of the transmitter (TII)
- a Signalling Channel the Fast Information Channel (FIC)
  - Provides details about all services (stations) carried
    - Service labels
    - Bit rates
    - Data location in the stream
  - Provides details of all data services and PAD
  - Provides announcements and warnings



# **System Structure**



**Overview of the DAB+ System** 





## **DAB+ Audio**

Many combinations to allow the most cost effective delivery of different audio content types

HE AAC+ V2 audio encoding table combinations

|                     |        | Sub-channel data rates (kbps) |     |                   |     |      |     |
|---------------------|--------|-------------------------------|-----|-------------------|-----|------|-----|
| Sampling rate (kHz) | SBR on | Stereo                        |     | Parametric Stereo |     | Mono |     |
|                     |        | Min                           | Max | Min               | Max | Min  | Max |
| 48                  | no     | 24                            | 192 | -                 | -   | 16   | 176 |
| 24                  | yes    | 24                            | 136 | 24                | 48  | 16   | 64  |
| 32                  | no     | 24                            | 192 | -                 | -   | 16   | 168 |
| 16                  | yes    | 24                            | 136 | 24                | 48  | 16   | 64  |

Coding Technologies / Dolby AAC+ implementation



# **DAB+ Audio Encoding**

# **Spectral Band Replication**

From Computer Desktop Encyclopedia

© 2005 The Computer Language Co. Inc.

Efficient sample rate and bit rate reduction method

#### MP3 at 128Kbps





#### MP3 at 64Kbps (frequencies cut in half)



File size

#### mp3PRO at 64Kbps (high frequencies SBR encoded)





#### Only slight audio degradation





#### DAB+ Audio Encoding Outer layer of FEC coding and interleaving provides protection for PAD – especially important to ensure robust SLS image delivery Signal Flow with outer layer FEC HF Reed-Solomon coder DAB main AAC Audio super and service V2 virtual interleaver framing channel audio multiplexer coder Scope of present document

Figure 1: Conceptual diagram of the outer coder and interleaver





Figure 2: Coding of the PAD field

Table 10: Maximum bit rate of F-PAD and X-PAD data

| AAC core sampling rate | Maximum bit rate for F-PAD data (2 bytes) | Maximum bit rate for X-PAD data<br>(196 bytes) |
|------------------------|-------------------------------------------|------------------------------------------------|
| 16 kHz                 | 267 bps                                   | 26 133 bps                                     |
| 24 kHz                 | 400 bps                                   | 39 200 bps                                     |
| 32 kHz                 | 533 bps                                   | 52 267 bps                                     |
| 48 kHz                 | 800 bps                                   | 78 400 bps                                     |

Typical use: SBR on @ 24kHz core sampling rate, 3 frames per super-frame, 1 super-frame per 120mS



## **Audio Bit Rates v PAD Bit Rate**

Need to ensure the correct balance between audio bit rate, audio settings and PAD

Audio bit rate ≈ Sub-Channel bit rate \*0.9 – PAD bit rate

SLS images are best synchronised with audio using pre-delivered images and header update display triggers, either TriggerTime = time/date or TriggerTime = now

| Sub-Channel | FEC      | Payload  |        |             |
|-------------|----------|----------|--------|-------------|
| bit rate    | Overhead | capacity | PAD    | Audio bit   |
| (kbps)      | 10%      | (kbps)   | (kbps) | rate (kbps) |
| 32          | 3.2      | 28.8     | 1      | 27.8        |
| 32          | 3.2      | 28.8     | 2      | 26.8        |
| 32          | 3.2      | 28.8     | 4      | 24.8        |
| 32          | 3.2      | 28.8     | 8      | 20.8        |
| 48          | 4.8      | 43.2     | 1      | 42.2        |
| 48          | 4.8      | 43.2     | 2      | 41.2        |
| 48          | 4.8      | 43.2     | 4      | 39.2        |
| 48          | 4.8      | 43.2     | 8      | 35.2        |
| 64          | 6.4      | 57.6     | 1      | 56.6        |
| 64          | 6.4      | 57.6     | 2      | 55.6        |
| 64          | 6.4      | 57.6     | 4      | 53.6        |
| 64          | 6.4      | 57.6     | 8      | 49.6        |
| 64          | 6.4      | 57.6     | 16     | 41.6        |
| 80          | 8        | 72       | 1      | 71          |
| 80          | 8        | 72       | 2      | 70          |
| 80          | 8        | 72       | 4      | 68          |
| 80          | 8        | 72       | 8      | 64          |
| 80          | 8        | 72       | 16     | 56          |



# **Signal Flow - Transmitter**



Figure 4.3.1: Conceptual block diagram of the EUREKA DAB system transmitter drive



## **FEC Code Rate Comparison**

| FEC Code | Code Rate | Capacity<br>(kbps) | Number of<br>64kbps<br>channels | Approximate power required relative to 3A |
|----------|-----------|--------------------|---------------------------------|-------------------------------------------|
| 1A       | 1/4       | 576                | 9                               | -3 to -6dB                                |
| 2A       | 3/8       | 864                | 13                              | -2 to -3dB                                |
| 3A       | 1/2       | 1152               | 18                              | 0                                         |
| 3B       | 2/3       | 1536               | 24                              | +3dB                                      |
| 4A       | 3/4       | 1728               | 27                              | +6dB                                      |

Payload capacity and transmit power can be traded Stronger FEC protection = lower capacity BUT lower power for the same coverage area



### **Transmission Structure**

Signalling and service information is sent in the Fast Information Channel



Figure 2: Transmission mode independent description of the FIC and MSC



## **DAB+ Transmission – Australian VHF channels**



2 DTV channels allocated = 14MHz = 8 DAB channels = 8A, B, C, D, 9A, B, C, D



## RF Spectrum



Figure 4.3.4: Example of DAB transmitted signal spectrum (VHF band III)

Signal bandwidth = 1536 carriers at 1kHz each => 1.535MHz Channel bandwidth = 1.712 MHz



# **Network Options**



**Overview of the DAB+ System** 

## **Star Network**

Central multiplexing equipment

Individual links per studio site

Simple networking

Stations are in control of their content

Privacy

This architecture is often used for stand-alone / isolated installations such as single city or area transmissions









## **Mesh Network**

Transparent interconnect between sites

High Redundancy and Reliability

Typically uses a multicast enabled VPN

Content produced at any site can be transmitted at any site

Suitable for distributed broadcast networks such as national multistudio networks





# **Monitoring Equipment - Overview**



Multiple monitoring points throughout the system allow rapid fault finding and rectification













Listeners provide the ultimate feedback!!







# **Network Management System**

Network
Management is
essential for rapid
fault detection and
correction

Virtually all equipment now has SNMP fault reporting

Remote access via web interface allows best grade of service





# **Examples of DAB+ multiplexer and transmitter equipment**





## The Future



# The Future – Hybrid Radio

Hybrid Radio combines digital radio broadcast to deliver audio and common PAD to many AND the internet to provide individual actions and services

DL+ and CAT-SLS are examples of Hybrid Radio

Providing More Information to listeners on demand

Tagging and reminders for later content use

The standards are being written now!



**Hybrid Radio** 

# What is Hybrid Radio





**Home Operation** 

# What is Hybrid Radio





**Mobile Operation** 

# More Information: Use Case Example 1 – connection to an advertiser





**More Information: Use Case Example 2 –** 

**Artist Information** 



Screen tap

Listeners can access more information about the current artist, tour dates, biographical info, purchase





# More Information: Use Case Example 3 – Public Information





# More Information: Use Case Example 4 – Sports Results



Drives listeners to use additional broadcaster facilities, value add advertising and cross promotion

What sport is on tonight, current and previous results, betting





# **Summary – Top Tips**

- DAB+ is the best Digital Radio delivery system available
- 2. Proven technology
- 3. Cost effective infrastructure
- 4. Deployed worldwide and expanding rapidly
- 5. Very flexible operation for broadcasters
- 6. Huge range of receiver products
- 7. Great features including scrolling text, images, EPG and data services
- 8. Many new developments including Interactivity



Overview of the DAB+ System

les.sabel@scommtech.com.au



# For more information