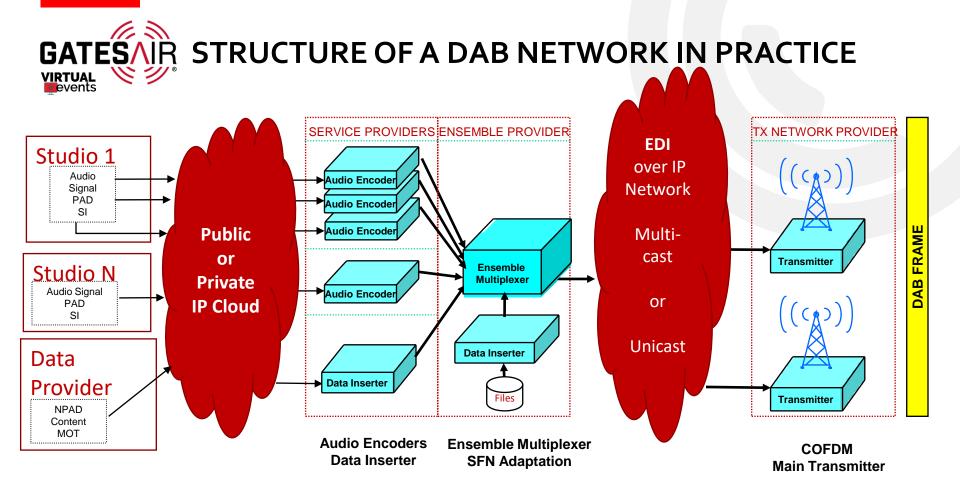


GATE SAIRCONNECT VIRTUAL events

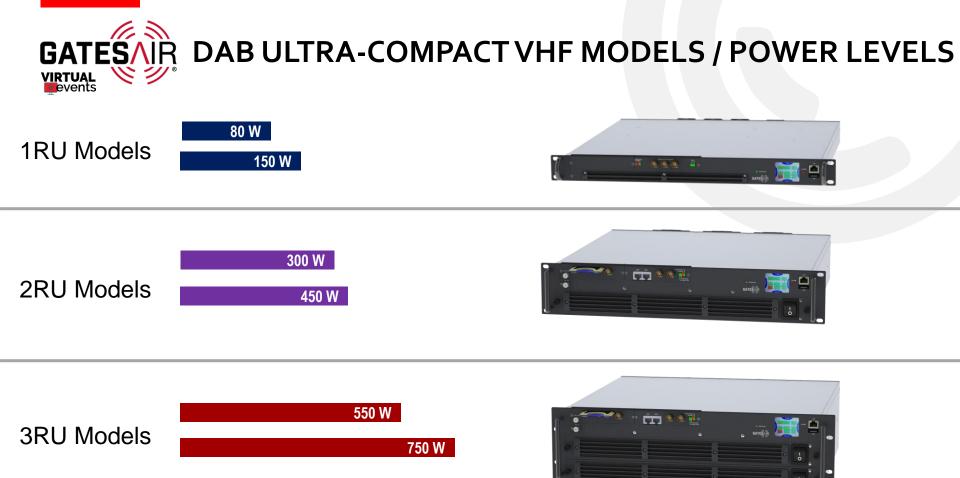
ADVANCES IN DAB TRANSMISSION SYSTEMS

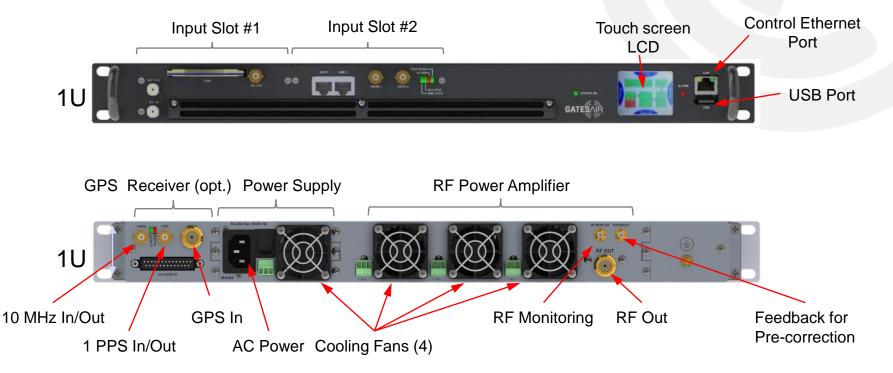

CONNECTING WHAT'S NEXT

RICH REDMOND

- Transmitter Options for DAB networks
- Advancements in energy efficiency
- Considerations using liquid or air cooled
- Configuration for redundant operations
 - Transmitter redundancy and link redundancy
- Reinventing transmitter sites
 - Multi Channel Transmitter systems
 - Multi Carrier transmitter

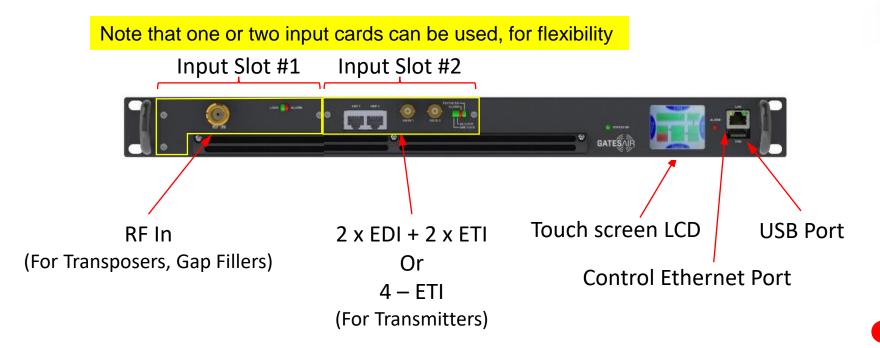
GATESIN DABULTRA-COMPACT MODELS - SUMMARY





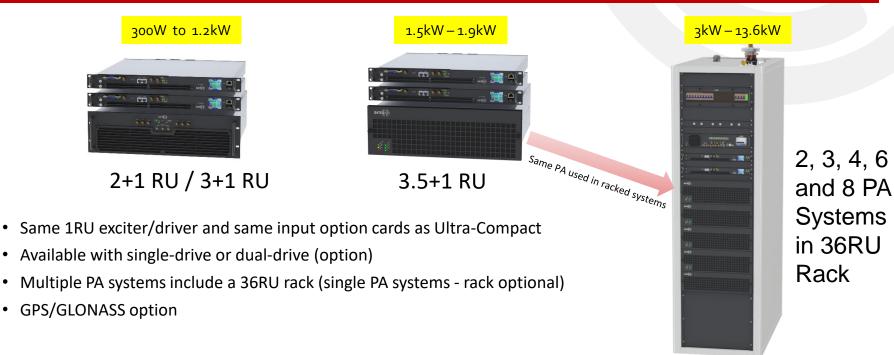
KEY FEATURES

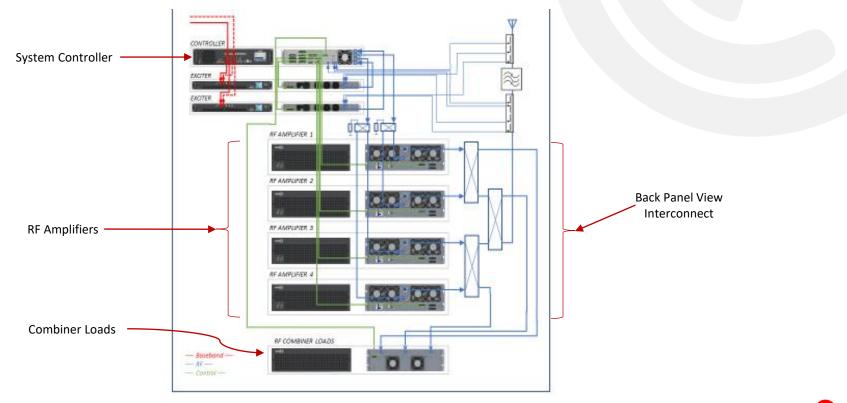
- High-efficiency Doherty PA's
 - VHF BIII is a single broadband design 170-240MHz
- ETI and EDI inputs
 - Additional input board options
 - 2 EDI plus 2-ETI
 - 4 ETI inputs
- Adaptive pre-correction circuits with MER
 <u>></u> 33dB
- Configurable as: Transmitter, On-channel SFN Gap-Filler, or Transposer
- Modular design, PA and Power Supply plug-in and can be replaced in a few minutes.



FRONT PANEL

UNDER THE HOOD - WHERE ARE THE CABLES?

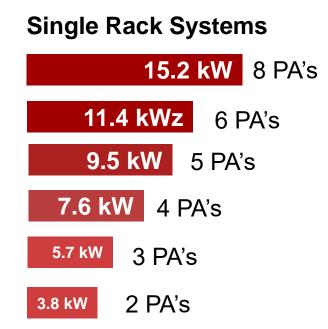

"No Cable" Design!

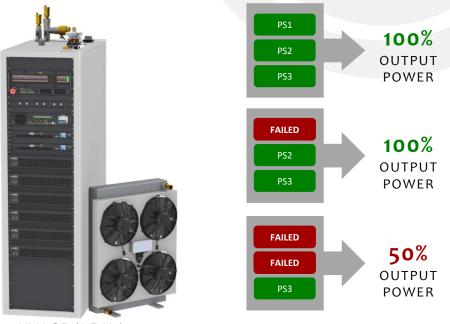


Maxiva Air-Cooled VAX-OP VHF Series

•

Maxiva DAB Liquid-Cooled VLX-OP Series


KEY FEATURES


- High Efficiency (Broadband PA's)
- Low consumption Pump and Heat Exchanger (pump + heat exchanger + external fans = 535W)
- Dual Redundant Pumps standard
- Coolant reserve tank (8 liters) for automatic liquid refilling, reduces on-site maintenance
- Liquid Cooled Control Unit: level (liquid + refilling), pressure, temperature, pump status, etc.
- Very small external heat exchanger with 24V power, 2 fans or 4 fans
- Heat Exchanger automatic reverse fan rotation feature to remove debris (user settable timing)

Maxiva Liquid-Cooled VLX-OP VHF Series

VLX-OP (6 PA's)

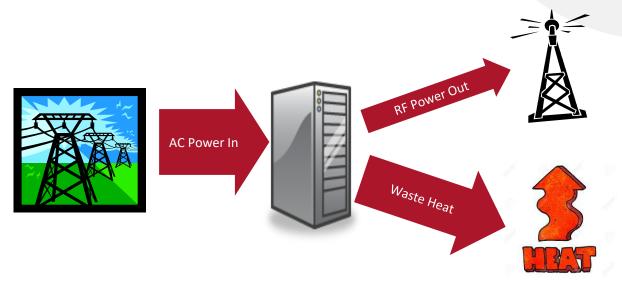
Lower Portion of Liquid-Cooled Tx Rack Automatic Liquid Refilling System (8 litres capacity)

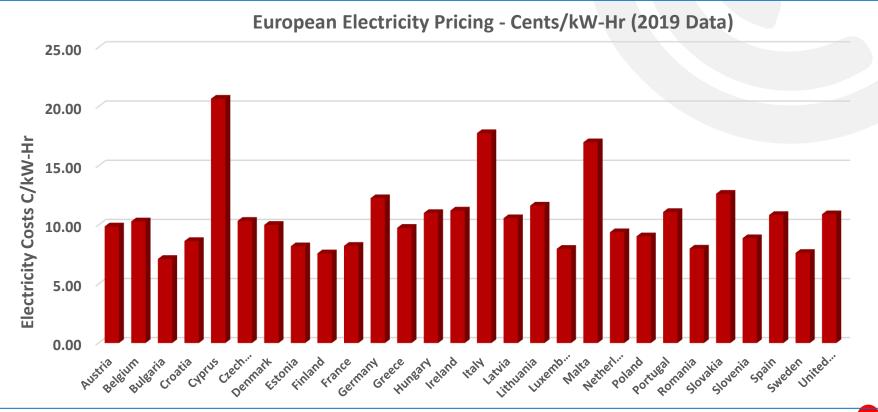
GATESAR VLX-OP HEAT EXCHANGERS

Fans 24V DC Speed-controlled

Programmable auto-reversing to clear debris

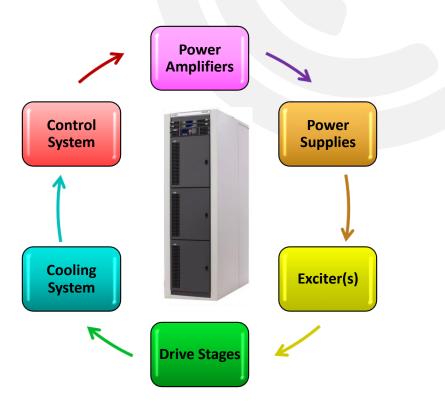
61 cm W x 80 cm H x 26 cm D (24" W x 31.5" H x 10.2" D)


72 cm W x 96 cm H x 27 cm D (28.3" W x 37.8" H x 10.6" D)


GATESAIR TRANSMITTER EFFICIENCY ADVANCES

• Efficiency of a transmitter:

• Definition: (RF Power Out / AC Power In) x 100%



TRANSMITTER EFFICIENCY

- Transmitter System Efficiency
- Some Items may have fixed losses:
 - Control System
 - Exciters
- Some Items may have varying losses:
 - PA Module (varies with modulation, saturation)
 - Drivers (varies with modulation, saturation)
 - Cooling System (speed-controlled pumps and fans)
 - Power Supplies (can vary depending on load)
- Why are low power transmitters less efficient than high power?
 - As power is reduced, fixed losses become a larger part of the equation

GATESAIR PRIMARY EFFICIENCY DRIVERS IN A TX

- Power Amplifiers
 - Most older designs used Class AB PA's
 - PA Efficiency in range 23% to 33% (Overall Tx efficiency in range of 16% to 27%)
 - Most new designs uses High-Efficiency (Doherty) PA's
 - PA Efficiency over 50% VHF and UHF (Overall Tx efficiency often > 40%)
- Power Supplies
 - 12 years ago 86% was "state-of-the-art" efficiency
 - Today power supplies can be up to 96% efficient
- Cooling System
 - Older less efficient transmitters used large high volume and pressure blowers
 - Large pumps and heat exchangers in liquid-cooled transmitters
 - New systems use variable speed fans and pumps and have less heat to remove

EFFECT OF POWER SUPPLY EFFICIENCY

Item	Old Technology PS 86% Effy.	Recent Power Supply 90% Effy	New High Eff. PS 96% Effy.
RF Power Output (W)	10,000	10,000	10,000
Power Amplifier Efficiency	51%	51%	51%
Combining losses (dB)	0.30	0.30	0.30
RF power before losses (W)	10,715	10,715	10,715
DC Power to PA's (W)	21,010	21,010	21,010
Power Supply Efficiency	86%	90%	96%
AC Power to Power Supplies (W)	24,430	23,345	21,886
Power Supply Loss (W)	3420	2334	875
Drivers	600	600	600
Exciters	150	150	150
Control	120	120	120
Cooling	600	600	600
Total AC Input (kW)	29,321	27,149	24,231
Overall Tx Efficiency	34%	37%	41%

- Clearly, the design of the power supply has a significant impact on total efficiency
- Example of a high-efficiency power supply:
 - Efficiency 96% at 50% FL
 - Power factor typ. 0.995
- Input voltage range typ. 185 300 VAC

TCO VERSUS TRANSMITTER EFFICIENCY

- It's the total cost to own and operate the transmitter system over time
- Includes initial equipment cost and delivery
- Includes the installation / commissioning costs
- Routine and unscheduled maintenance costs
- Repair/replacement and other operational costs

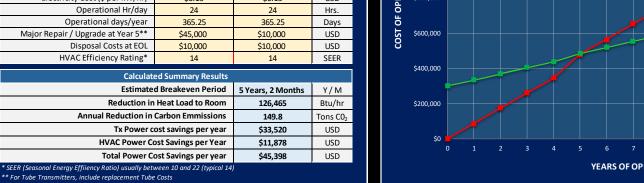
- Transmitter efficiency = Power Out/ Power In (tx only)
- System level efficiency may also include::
 - AC transformers and voltage regulators
 - Heat load to the room (HVAC power costs)
 - RF system losses (often significant)
 - RF feeder losses (often significant)
 - Even antenna gain and pattern?

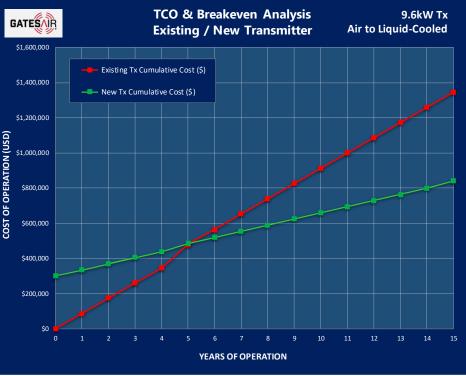
CALCULATING TCO & BREAKEVEN ANALYSIS

- Each element of the Transmitter lifecycle has a cost
- Over the lifetime of the Transmitter, the total cost may far exceed the purchase price by several times

Questions:

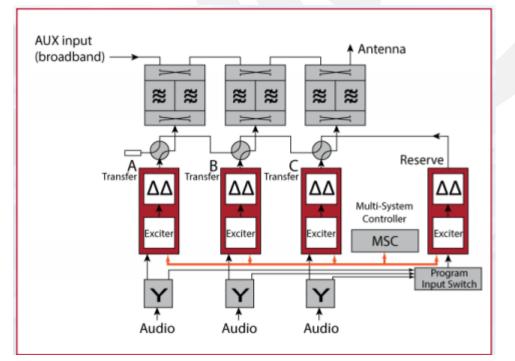
- Is it really worth buying a new transmitter?
- Will I see a return on investment?
- When will it pay back for itself?


Let's use the TCO Calculator and find out...

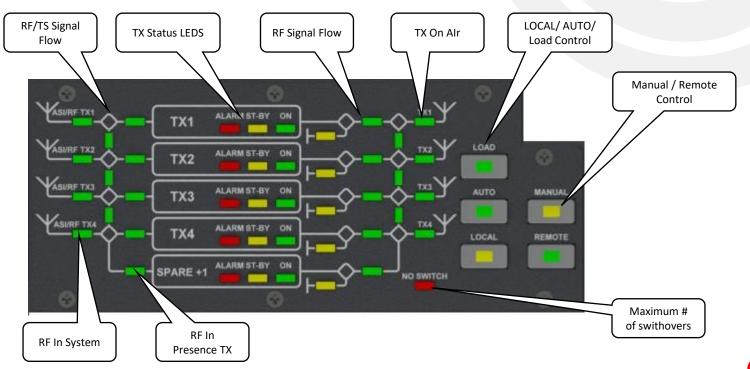


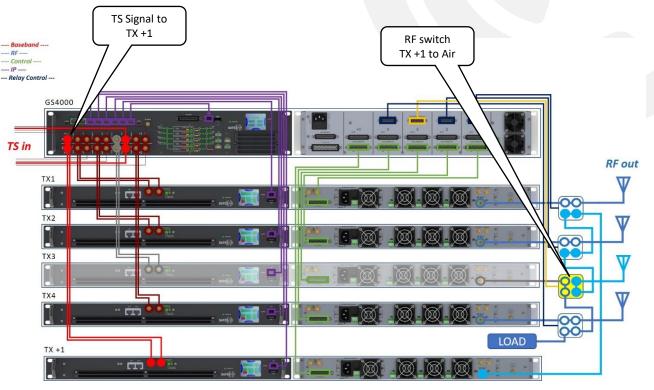
** For Tube Transmitters, include replacement Tube Costs

GATES AIR TO LIQUE BREAKEVEN AIR TO LIQUID-COOLED 9.6KW TX TCO AND

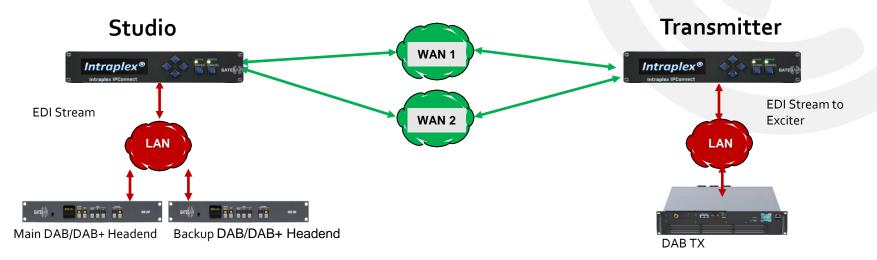

		User Entry Cells:			
GATESAIR TCO & Breakev	, Result Cells:				
Item	F. 1.41				
Transmitter Model	Existing Transmitter Diamond DHD45P2	New Transmitter ULXTE-16 UDATE-16			
			1.547		
Tx Average Power Output	9.6	9.6	kW		
Cooling Method (select Air or Liquid)	Air	Liquid			
Planning Costs	\$0	\$1,200	USD		
New Transmitter Cost	\$0	\$265,000	USD		
Delivery / Shipping Costs	\$0	\$5,500	USD		
Installation / Commssioning Costs	\$0	\$29,000	USD		
Training Costs	\$0	\$2,500	USD		
Average Annual Maintenance Costs	\$11,000	\$4,500	USD		
Transmitter Efficiency	19.9%	42.2%	%		
Electricity Cost (\$ per kW/hr)	\$0.15	\$0.15	USD		
Operational Hr/day	24	24	Hrs.		
Operational days/year	365.25	365.25	Days		
Major Repair / Upgrade at Year 5**	\$45,000	\$10,000	USD		
Disposal Costs at EOL	\$10,000	\$10,000	USD		
HVAC Efficiency Rating*	14	14	SEER		
Calculated Summary Results					
Estimate	5 Years, 2 Months	Y/M			
Reduction in	126,465	Btu/hr			
Annual Reduction in	149.8	Tons CO ₂			

GATES CONFIGURATIONS FOR REDUNDANT OPERATIONS

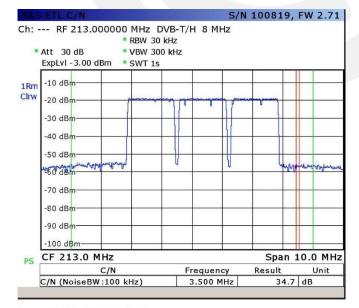

- 1+1 Main Alt
- N+1 multi transmitter back up
- Dual Drive
- Evaluate your tolerance for risk vs the cost to provide insurance
- Share back up in a multi transmitter site can be affordable


4000 SERIES FRONT PANEL

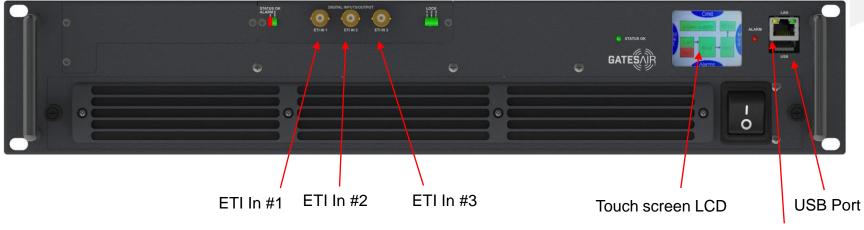
Front Panel Status on 4000 series



- Illustration of +1 redundancy
- TX 3 is off-line, Transport stream (RED) is rerouted for TX3 to +1 spare
- RF coax switch relay (BLUE) positions to put +1 TX to air



- Provides "Hitless" protection using Intraplex[®] Dynamic Stream Splicing technology for EDI streams
- IPConnect intercepts the streams from the Headend and reliably tunnels it to one or more exciters
- IPConnect works with unicast, multi-unicast and multicast topologies
- Also monitors and provides automatic failover between Main and Backup Headend at the Studio side

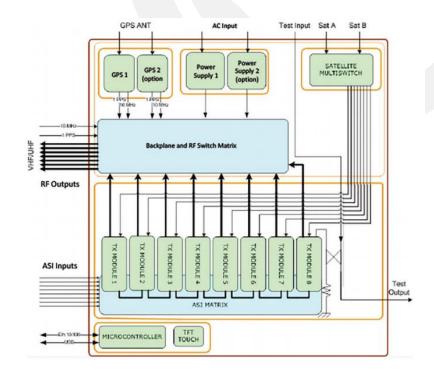


- Allows up to 3 DAB+ Carriers to be generated or re-transmitted through a single amplifier
- Advanced pre-correction and linear broadband amplification
- Unique solution ONLY available from GatesAir
- More economic than standard solutions
- More compact
- Less expensive to operate, lower power consumption

Date: 10.JUN.2017 13:43:18

Control Ethernet Port

MULTICARRIER DAB+ TECHNICAL SPECIFICATIONS


- Compact 1U rack 19 "chassis.
- Output power up to 240W rms total
- Common RF amplification.
- Wide Band VHF BIII Doherty Amplifier technology with high efficiency.
- Supported Modulations: DAB / DAB + / T-DMB.
- Multi-carrier modulation (3 channels), for adjacent and non-adjacent frequencies.
- Adaptive pre-correction circuits.
- Built-in high-stability GPS / GLONASS receiver (Optional).
- Hot swappable amplifier and power supply.
- Input interface: 3 ETI inputs.
- SNMP, Web interface and Touch Screen display.
- USB service interface for up-grade / download.

MULTI CHANNEL TRANSMITTER

- Ideal for low power multi ensamble sites shared redundancy
- 7+1 6+2 redundancy
- Integrated Satelite receiver card

- New options for DAB transmission networks allow for network design flexibility
- Advancements in energy efficiency help reduce long term operating costs
- Energy consumption and costs can be impacted by using liquid or air-cooled transmitters
- Multiple options can allow for cost effective redundancy for transmitters and links
- Unique system configurations and modulation capabilities can simplify network deployment

GATESAIRCONNECT VIRTUAL events

ADVANCES IN DAB TRANSMISSION SYSTEMS

CONNECTING WHAT'S NEXT

RICH REDMOND