
Automotive SDR

over

 multi-core Linux

‘Digital Radio Connecting the Car’

Berlin, Germany

Nov, 2012

Scope of discussion

 Automotive Linux

– New and exciting tools for developers

– Implications on DMB system partitioning

 The mission : DMB as SDR over Linux

– Motivations

– SDR feasibility and performance

 DMB stack done the Linux way

– From monolithic to modular design

– Potential area for wider standardization

The GENIVI platform

 The offering of Linux

– De-facto standard GNU tools

– Mature OS and libraries enable setting focus on the
application rather than infrastructure

– Open-source, documentation and community support -
better ROI on our learning curve

 Technology push from the Smartphone industry

– Vendor optimized algorithms for handling popular
multimedia offloads s/w performance

– Cutting edge computer-on-chip
– ATOM and ARMv7 (NEON) over 1Ghz speeds

– Larger memory space not present before in DMB receiver ICs

– Dual and quad multi-core

Re-Partitioning of the DMB receiver

 Fixed design constraints

– Physical layer RF & modem properties

– Different continents = different standards

 What does change ?

– DMB becomes on source out of many IVI platform

– Platform GUI composed of multiple visual output.

– Data applications keep adding to the broadcast
stack.

– Multichannel audio: back, front, surround, delayed
playback , mixing

– Variety of radio handover tactics between systems
FM/AM-DMB , dual DMB, diversity, Internet radio

– Different continent = different software

Mission

 Software defined receiver under Linux

– DMB

– Dual DAB or diversity

– DAB-FM

– Dual FM or diversity

Why SDR? (..reminders)

 Sharing of hardware resources
– Cost of MIPS & memory already attributed to ‘other’ applications

– Excessive SoC resources enable innovative features that are not pre-
designed into custom IC (e.g. diversity tactics)

 Reducing NRE on H/W qualification
– Single hardware, multiple standards

– Hardware qualification perimeter reduced

 Flexible interfaces between modules
– API and datasheet not ‘hardwired’ to H/W module

– Optimize data distribution between modules (queues, shared memory, data
trees, etc)

 Long term investment
– Capabilities and test results preserved as long term intellectual properly

– Moor’s law

SDR also has cons

 Power consumption

– Negligible effect within automotive IVI platform

 Software integration challenges

– Predicting final CPU load balancing for a set of
applications running concurrently

– Faster change rate compared to h/w
methodology requires repeated testing

– Tendency to change the spec and push the
envelope

– Need inter process protection (..Linux to the
rescue)

Legacy system

Host SoC

DMB

Module

I2S audio

C&C

RF

Application Data (SPI/..)

audio

Display & GUI

N
R
E

FIC

DAB/DAB+/DMB

XPAD/DG/PKT/EPM

DMB/Linux system

Host CoC

DMB

Module
C&C

RF

Ensemble (SPI/..)

audio

N
R
E

FIC

FIC

DAB/DAB+/DMB

XPAD/DG/PKT/EPM

Display & GUI

DMB/SDR/Linux system

Host CoC

RFE

C&C

RF

Baseband

audio

N
R
E

FIC

DAB/DAB+/DMB

XPAD/DG/PKT/EPM

Display & GUI

SDR radio front-end

D.T. D.T. D.T. D.T.

Serial data link

Kernel mode drivers

Simplified SDR stack

Media decoders

Mp2 AAC MOT TPEG H.264

Transport

MP2 DAB+ DMB demux PKT data

EU147 demux

FIC MSC

DAB demod process

Ensemble (or sub-selection)

Audio pre-
process

Graphic
rendering

User interface External
sources

User space

Kernel space

Read()

ARMv7 as baseband DSP

 Demodulation with ARMv7
– PCI-e interface acting as bus master

– FFT and Viterbi optimized to NEON instructions

 Performance

– Clock rate: 940 MHz

– Profile : mp2 Audio channel of 192kbps

– 310 MHz on single core from baseband to audio

– Audio decoding & playback alone 47 MIPS

– Likely to execute on another core

 Conclusion :
– Maybe not the best DSP in class, but..

– Enough MIPS on single core for dual tuner receiver.

The DMB stack

DMB media flows (and they keep adding..)

Gstreamer ‘magic’

au_stream =

 popen(

 “gst-launch fdsrc fd=0 ! Decodebin ! Alsasink”, “w”

);

 fwrite(data,sizeof(uint8_t),data_len,au_stream);

Gstreamer framework

Gstreamer concepts

DMB pipeline

DAB+ example pipe

dabsdrproxy

src

Dabdemux

src sink

src

src

FIC parser

sink

Dabp_xport

src sink

Pkt_asm

src sink

xpadtap

src

sink
motdec1

sink src

aacdec
src

sink

motdec2

sink

…

H/W demod

proxy
src

ETI demod

simulator

src

src

Sometimes

Always

gst-launch dabsdrproxy ! Dabdemux name=demux

demux.FIC ! queue ! FICparser

demux.msc00 ! dabp_xport | xpadtap name=Xpad

demux.msc01 ! queue ! Pkt_asm ! Motdec name=motdec1

Xpad.audioout ! aacdec ! audioconvert ! audioresample ! osssink

Xpad.dataout ! queue ! Motdec name=motdec2

Q

Q

Q

DMB stack made of plugins

 The obvious: Hardware agnostic stack

 Match feature set to platform capabilities

 Chain plugins from multiple s/w vendors

– Plugin code can remain binary and private

– Interfaces turn open

– De-facto standard between developers

 Framework for unit testing

– Example: ETI source replacing H/W demod

– GOBJECT Introspection and scripting

Key junction

 Sink port of DAB ensemble demux

– Signal Telemetry

– Timing

– Tuners configuration

– UI ‘cookies’

 Can it become standard ?

Ens. demux

src sink

src

src

src

Sometimes

Always

DAB demux sink interface

Summary

 SDR is possible on modern ARMv7

platforms

 External H/W module can reduce to an

array of digital tuners

 Modular DMB stack over Gstreamer

framework offers important advantages

