DAB in Thailand Network design and cost analysis

Dr Les Sabel

Chair, WorldDAB Asia Pacific Technical Group

4 March 2024

AGENDA

- 1. Network and system requirements
- 2. Transmission plan summary
- 3. Network options
- 4. Functional implications
- 5. Cost analysis
- 6. Conclusions

High level requirements

- 95% of population coverage
- Accommodate the majority of existing FM services, approx. 4,000
- Target the lowest overall Total Cost of Ownership (TCO) while not compromising system efficiency
- The transmission plan includes National, Regional and Local services.

The DAB system includes:

- Capex: Audio and PAD encoder systems, Head-end systems, Transmitters, Antenna systems, Monitoring systems, IP systems, GLUE
- Opex: Site costs, telecommunications costs, energy costs, operations costs (maintenance, monitoring and repairs)

Network and system requirements

Network architectures

• Primary network layer scenarios studied

Layer	Number of ensembles				
	Scenario 1	Scenario 2	Scenario 3 (Baseline)		
National	0	1	1		
Regional	0	0	1		
Local	3	2	1		

- Scenario 3 is the baseline as it treats all layers equally
- Other scenarios are also studied when considering demand and rollout variations

Transmission plan summary

The plan includes 330 transmissions in 34 sub-regions and 10 regions

Multiplexer system network architecture options

- Distributed
- Regional
- Centralised

Distributed architecture

- Each local sub-region has its own multiplexer and multiplexer centre connected to all transmitter sites within the sub-region
- Each region has its own multiplexer connected to all transmitter sites within that region
- The national multiplexer connects to ALL transmitter sites
- Multiplexer centres are located across Thailand, one in each sub-region plus the national multiplex located in Bangkok, total of 35 sites
- There will be a high number of telco connection routes, most with a single EDI stream

Functional implications

- The cost of the network is the primary consideration when choosing the most appropriate architecture
- However, we need to address a number of Operational Considerations when both specifying the network constraints and selecting the network architecture
- We rate each architectural option as High (best), Medium (middle) and Low (worst)

Aspect	Centralised	Regional	Distributed
Functionality	Н	М	М
Reliability	Н	Н	М
Flexibility	Н	М	L
Maintainability	Н	М	L
Operations	Н	М	L
Security	М	М	М

- Overall the Centralised multiplexer network architecture has the most beneficial operational considerations
- The Distributed architecture provides some security and resilience capabilities due to the distributed nature of the sites

- Process
 - Generation of broadcasters, multiplexer and transmission site templates
 - Determine the combination and transmitter power and antenna gain to minimise the transmission site TCO1
 - Parameterize the head-end requirements
 - Scenarios for the number of ensembles and services
- The TCO period nominally 7 years

Baseline parameters are:

- Network layers = 1N + 1R + 1L
- Multiplexer systems shall be 1+1 redundant
- Transmitters shall be N+1 redundant
- IP systems shall be 1+1 redundant
- Centralised and Regional architectures shall have DR sites
- The DR sites do not have redundant mux and encoding systems
- Each ensemble contains 18 services (at 64 kbps)

Site templates – Broadcaster site

- The broadcaster equipment is the same for all network architectures
- The core equipment is shown in grey
- Optional PAD server and Service controller have dashed outline
- The redundant systems are shown in blue

Site templates – Multiplexer site - Main

- Generalised flow diagram
- Vendor dependent
- Architecture dependent
- Applies to all architectures

Site templates – Multiplexer site - Disaster Recovery

- Only used for Centralised and Regional architectures
- No Alt multiplexer
- No Audio transcoders relies only on the studio encoders

Site templates – Transmitter site

- The diagram applies to all transmitter suite types
- The number of transmitters is equal to the number of ensembles + 1 for redundancy

Capex, Opex and TCO

- The calculations are performed in a Microsoft Excel workbook / spreadsheet
- The analysis takes input from
 - transmission site details workbook
 - Vendor costs workbook with budgetary quotations from reputable companies

Calculates Capex, Opex and TCO Output analysis cost breakdowns and summaries Cashflow Access

- Analysis
 - TCO results are shown as % relative to the lowest being 100%

Cost	Architecture			
	Distributed	Regional	Centralised	
% TCO (7 years)	101.7	101.5	100.0	
% Multiplexer network Capex	7.9	7.6	6.3	
% Multiplexer network Opex	9.5	13.6	9.3	

- The Centralised architecture is the most cost effective
- The multiplexer network requires less than 8 % of the total Capex
- The multiplexer network requires less than 10% of total Opex
- The transmission sites dominate both Capex and Opex

Results - Centralised

- Overall comparison of Capex and Opex over the TCO amortisation period (7 years)
 - Opex = 71%
 - Capex = 29%
- If we make the TCO amortisation period 14 years
 - Opex = 83%
 - Capex = 17%

It is very important to ensure that Opex costs such as site access, Telco and Operations are minimised through the use of the most appropriate systems choices and operating procedures

Centralised architecture - Capex v Opex - 7 years

Results - Centralised - Capex analysis

- Tx sites
 - Transmitters 30%
 - Antenna systems = 23%
 - Total = 53% of Tx sites and 48% of all Capex
 - Installation 26%
 - possible focus area for Capex reduction
- Emux sites
 - Multiplexing systems 43%
 - Encoders 43%

Transmitter site Capex

Results - Centralised - Opex analysis

- Tx site
 - Site rental 42%
 - a good target for Opex reduction
 - Power 31%
 - · The reason why we optimise the antenna
 - Telco 13%
 - May be optimistic
- Emux
 - Service Level Agreements 46%
 - Seems very high given Centralised systems
 - PAD systems 31%
 - Seems very high for functionality gained
 - Ops and maintenance 19%
 - Needs further investigation

3%

31%

Observations and conclusions

- The analysis indicates that the CAPEX difference between the 3 options was small and was dominated (90%) by the transmission site equipment
- Opex costs are around 34% per annum of the Capex cost
 - Dominated by Tx site access fees, Energy and Telco costs
- Opex costs need to be carefully obtained due to their long term impact
- The Centralised network architecture option has the most positive operational aspects
- The Distributed option has the highest level of local control, but also the highest long term Opex
- When stakeholders work together they can produce new opportunities

Thank you

For further information, please contact:

www.worlddab.org

or les.sabel@scommtech.com.au

