

A public emergency warning system based on DAB+

Lindsay Cornell, Principal Systems Architect, BBC Chair, WorldDAB Technical Committee

The starting point: German public and private broadcasters

Times of crisis

- **Floods** in Germany killed over 140 people in 2021
- Climate change is everywhere
- Times of **war** in Eastern Europe: Ukraine

Reliability

- Tests had shown that mobile phone apps and their warning messages ("Cell broadcast, 3GPP TS 23.041") didn't always work well
- Broadcasters wanted a robust and reliable answer
- The DAB network has federal and state government support as a backbone of public information

Big DAB+ market

- Germans listen to about
 3 hours of radio each day
- Over 2m consumer DAB receivers and some 2.6m new passenger cars are sold p.a., amounting to around
 5m new DAB+ radios in Germany per year

Co-operation: national interests, global ambition, expertise

How it's happening

German broadcasters saw the potential for a co-operative approach using the DAB network

They brought a **well-considered proposal to WorldDAB** and asked for the specification work to be handled by the **WorldDAB Technical Committee**

They realised that despite the **size and strength** of the German market, **global scale** was needed

The WorldDAB Technical Committee is working hard to define a **fully featured EWS**

They wanted the system to be specified in **international standards**

Germany is setting up a **receiver compliance regime** to ensure that products will meet the **forthcoming ETSI standards** and rules

dab+

WorldDAB Technical Committee Task Force Emergency Warnings

The request from the Digital Radio Germany Association

Alert Messages

- Spoken message for essential information: where, when, what to do
- The Alarm Announcement feature, including the OE signalling, used to inform receivers when an alert is active

Sleep and Wake-up

- Receivers to have a sleep mode which monitors a DAB ensemble for alert signalling
- Receivers to wake-up to play the audio when an alarm announcement is detected, retuning to another ensemble if needed
- Receivers to retune to the alarm announcement if playing a different service

Receiver testing

- Create an ETSI standard describing tests that ensure that receivers react correctly to the EWS signalling
- This technical standard to be the basis for a compliance scheme with a recognisable Mark to be used on product packaging

Analysis by the WorldDAB TC TF-EWS

- The TF reviewed the proposed operation and requirements and identified some key issues:
 - Emergencies do not generally have the same alert area as DAB ensembles
 Using existing alarm announcement signalling restricts the options for a new EWS
 Arbitrary sleep timing will lead to lost audio at the start of an announcement
- The TF has responded by creating a novel location coding system...
 - Globally applicable
 - $\circ\,$ Lightweight with high coding efficiency
- ... defining a new FIG to carry the signalling for EWS...
 o Identification of participating ensembles
 o Alert stage, importance, location
- ... and designing a wake-up synchronisation scheme to minimise audio loss

Requirements for a universal location coding system

- Can be used anywhere in the world
 - \circ Does not rely on national or regional location systems
- Has high coding efficiency
 - Localisation must be able to be transported efficiently in the DAB signalling channel (FIC)
- Has a simple algorithmic determination
- Is applicable to low-cost devices
 - \circ No complex operations in the device
 - No need for additional capabilities in a domestic (static) device
 - $\,\circ\,$ Easy user programming of its location

8

Basic concept

- The earth is divided into areas using a hierarchy of spherical rectangles
- The first division is into a number of "zones"
 - The zones are of equal polar coordinate dimensions
 - They should be of the right "granularity"
- The solution has 42 zones each 36°×36°

Basic concept

Case 4 New York				Zone 0		1	A A A A A A A A A A A A A A A A A A A		-
				1997 10 10 10 10 10 10 10 10 10 10 10 10 10			ASIA		
Zone 6	Zone 7	Zone 8	Zone 9	Zone 10	EOROPE	Zone 2	Zone 3	Zone 4	Zone 5
Zone 16	Zone 17	Zone 18	Atlant Ocea Zone 19	Zone 20	AFRICA Zone 11	Zone 12	Zone 13	Zone 14	Zone 15
Paci Oce Zone 26	fic an Zone 27	Zone 28	SOUTH AMERICA Zone 29	Zone 30	Zone 21	Zone 22	Indian Ocean Zone 23	OCEANI Zone 24	4 Zone 25
Zone 36	Zone 37	Zone 38	Zone 39	Zone 40	Zone 31	Zone 32	Zone 33	Zone 34	Zone 35
Zone 41 ANTARCTICA									

world dab 9

Basic concept

- Each spherical rectangle is divided progressively into smaller spherical rectangles to create nested divisions
- The zones are divided into sub-areas

 The sub-areas are of equal polar coordinate dimensions
 - A binary division in both dimensions creates an efficient coding
- The area has 16 sub-areas
 - Each sub-area can be identified by a hexadecimal digit
 - The longer the code, the smaller the area it defines

Location Code

- Hierarchical Code scheme of WGS84 Coordinates
 - Granularity scales with code length 30-bit code (L6) has ~1km resolution (vertical)
 - Shorter codes are larger square
 - Serves to define
 - Alert Region in a set of codes
 - Receiver location with single 30-bit code

+ Properties

Universal

Code scheme provides for any location globally No region-specific mechanisms involved

Light-weight

Receiver support feasible in entry-class model No special requirement to UI, memory or CPU

• Efficient

Compact encoding of arbitrary region, low (FIC) data capacity, fast transmission (<1sec) of alert region

L1

L2

1.3

14

L5

L6

NOTE 1: Polar zones (Z0, Z41) extend 18' from pole NOTE 2: Length of spherical rectangles is only independent from latitude in N-S direction. Given sizes apply to E-W direction only

L2 Ñ L6

Device location

- In order to use localisation, the device needs to know its location
 - For a low-cost, static device like a kitchen radio, this probably means a user entered code, the code being generated by an app or website
 - For a higher specification device, it might be input from an app or website via Bluetooth or wifi
 - For a mobile device, for which the location is changing, GNSS is probably the best source of the location code, calculated from the WGS84 coordinates

Location coding example

- BBC Broadcasting House in London is located at WGS84 (51,5187412, -0,1434571)
- First, the coordinates are translated:
 - SE = 90 51,5187412 = 38,4812588
 - EE = -0,1434571 + 360 = 359,8565429
- Second, the zone number is calculated:
 - Zone number = 10 × int((38,4812588 18)/36) + int(359,8565429/36) + 1 = 10
- Third, the digits are calculated:
 - SC = int(frac((38,4812588 18)/36) × 4 096) = 2330 = 91A = 10 01 00 01 10 10
 - EC = int(frac(359,8565429/36) × 4 096) = 4079 = FEF = 11 11 11 10 11 11
 - CC = 1011 0111 0011 0110 1011 1011 = B736BB
- The location code for BBC Broadcasting House is thus Zone 10, B736BB

Location coding example

 The location of BBC Broadcasting House within Zone 10, B736BB

Alert area

- The alert area will be represented by a number of location codes • Shorter location codes represent larger areas
- The device compares its location code with each location code provided in the FIC that represents the alert area
 - o Because of the code hierarchy, if a received alert area location code has fewer than 6 digits, only the corresponding digits of the device's location code are compared: if they match then the device is located within the alert area – the additional digits describe an area within the shorter code

Example: Severe weather warning for Northern Germany

Requirements for sleep/monitor/wake

- Sleep state must consume almost no power
 - \circ So as many functions as possible need to be switched off
- Monitor state must be as short as possible
 - \circ The information to make a decision needs to be there quickly
- The audio message should be heard in full, even when switching from another DAB signal
 - So the receiver monitoring period needs to be aligned with the start of alert signalling

Basic concept for sleep/monitor/wake

The alert signalling is time aligned

• DAB provides a time signal with ms accuracy

- Devices all enter the monitor state together
 - The information for all alerts is processed and devices decide based on their location and knowledge of available DAB signals whether to start playing the audio alert
- Alerts ideally are made at the start of a minute (i.e. when the seconds count is 00) o But the system will also work if an alert is made at any time, but with loss of audio replay for sleeping devices

Current status and timeline

- The specification of the EWS origination system is nearing completion
- Initial test case analysis has been performed
- The specification for receiver testing will draw heavily on the experience gained producing ETSI TS 103 461, the receiver minimum requirements specification
- It is expected that both specifications will be approved within WorldDAB in Q2, 2024
- It is expected that the German certification scheme will be put in place for Q3, 2024

Thank you

www.worlddab.org

